首页 产品展示 关于佰昊 设备展示 百科知识 电子感应器 质量保证 销售网络 联系我们
  设备展示
  新闻动态
  在五金行业中数控车床加工不可缺少
  自动车床加工的工艺特点
  数控车床加工零件时砂轮切削工件的情况
  CNC数控车床加工的换刀过程
  联系我们
地 址:苏州市吴江同里邱舍开发区
        屯浦南路148号
电 话:+86-512-63211588
联系人:沈 金 华
手 机:13962569221
传 真:+86-512-63202908
E-mail: qlty1st@163.com
  五金百科
超精密发展
发布时间:2014/12/24 访问人数:1021
超精密加工的发展经历了如下三个阶段。
(1)20世纪50年代至80年代为技术开创期。20世纪50年代末,出于航天、国防等尖端技术发展的需要,美国率先发展了超精密加工技术,开发了金刚石刀具超精密切削——单点金刚石切削(Single point diamond tuming,SPDT)技术,又称为“微英寸技术”,用于加工激光核聚变反射镜、战术导弹及载人飞船用球面、非球面大型零件等。从1966年起,美国的unionCarbide公司、荷兰Philips公司和美国LawrenceLivemoreLaboratories陆续推出
  各自的超精密金刚石车床,但其应用限于少数大公司与研究单位的试验研究,并以国防用途或科学研究用途的产品加工为主。这一时期,金刚石车床主要用于铜、铝等软金属的加工,也可以加工形状较复杂的工件,但只限于轴对称形状的工件例如非球面镜等。
  (2)20世纪80年代至90年代为民间工业应用初期。在20世纪80年代,美国政府推动数家民间公司Moore Special Tool和Pneumo Precision公司开始超精密加工设备的商品化,而日本数家公司如Toshiba和Hitachi与欧洲的Cmfield大学等也陆续推出产品,这些设备开始面向一般民间工业光学组件商品的制造。但此时的超精密加工设备依然高贵而稀少,主要以专用机的形式订作。在这一时期,除了加工软质金属的金刚石车床外,可加工硬质金属和硬脆性材料的超精密金刚石磨削也被开发出来。该技术特点是使用高刚性机构,以极小切深对脆性材料进行延性研磨,可使硬质金属和脆性材料获得纳米级表面粗糙度。当然,其加工效率和机构的复杂性无法和金刚石车床相比。20世纪80年代后期,美国通过能源部“激光核聚变项目”和陆、海、空三军“先进制造技术开发计划”对超精密金刚石切削机床的开发研究,投入了巨额资金和大量人力,实现了大型零件的微英寸超精密加工。美国LLL国家实验室研制出的大型光学金刚石车床(Large optics diamond turning machine,LODTM)成为超精密加工史上的经典之作。这是一台最大加工直径为1.625m的立式车床,定位精度可达28nm,借助在线误差补偿能力,可实现长度超过1m、而直线度误差只有士25nm的加工。
  (3)20世纪90年代至今为民间工业应用成熟期。从1990年起,由于汽车、能源、医疗器材、信息、光电和通信等产业的蓬勃发展,超精密加工机的需求急剧增加,在工业界的应用包括非球面光学镜片、Fresnel镜片、超精密模具、磁盘驱动器磁头、磁盘基板加工、半导体晶片切割等。在这一时期,超精密加工设备的相关技术,例如控制器、激光干涉仪、空气轴承精密主轴、空气轴承导轨、油压轴承导轨、摩擦驱动进给轴也逐渐成熟,超精密加工设备变为工业界常见的生产机器设备,许多公司,甚至是小公司也纷纷推出量产型设备。此外,设备精度也逐渐接近纳米级水平,加工行程变得更大,加工应用也逐渐增广,除了金刚石车床和超精密研磨外,超精密五轴铣削和飞切技术也被开发出来,并且可以加工非轴对称非球面的光学镜片。
  世界上的超精密加工强国以欧美和日本为先,但两者的研究重点并不一样。欧美出于对能源或空间开发的重视,特别是美国,几十年来不断投入巨额经费,对大型紫外线、x射线探测望远镜的大口径反射镜的加工进行研究。如美国太空署(NASA)推动的太空开发计划,以制作1m以上反射镜为目标,目的是探测x射线等短波(O.1~30nm)。由于X射线能量密度高,必须使反射镜表面粗糙度达到埃级来提高反射率。此类反射镜的材料为质量轻且热传导性良好的碳化硅,但碳化硅硬度很高,须使用超精密研磨加工等方法。日本对超精密加工技术的研究相对美、英来说起步较晚,却是当今世界上超精密加工技术发展最快的国家。日本超精密加工的应用对象大部分是民用产品,包括办公自动化设备、视像设备、精密测量仪器、医疗器械和人造器官等。日本在声、光、图像、办公设备中的小型、超小型电子和光学零件的超精密加工技术方面,具有优势,甚至超过了美国。日本超精密加
  工最初从铝、铜轮毂的金刚石切削开始,而后集中于计算机硬盘磁片的大批量生产,随后是用于激光打印机等设备的多面镜的快速金刚石切削,之后是非球面透镜等光学元件的超精密切削。l982年上市的EastnlanKodak数码相机使用的一枚非球面透镜引起了日本产业界的广泛关注,因为1枚非球面透镜至少可替代3枚球面透镜,光学成像系统因而小型化、轻质化,可广泛应用于照相机、录像机、工业电视、机器人视觉、CD、VCD、DvD、投影仪等光电产品。因而,非球面透镜的精密成形加工成为日本光学产业界的研究热点。
  尽管随时代的变化,超精密加工技术不断更新,加工精度不断提高,各国之间的研究侧重点有所不同,但促进超精密加工发展的因素在本质上是相同的。这些因素可归结如下。
  (1)对产品高质量的追求。为使磁片存储密度更高或镜片光学性能更好,就必须获得粗糙度更低的表面。为使电子元件的功能正常发挥,就要求加工后的表面不能残留加工变质层。按美国微电子技术协会(SIA)提出的技术要求,下一代计算机硬盘的磁头要求表面粗糙度Ra≤0.2nm,磁盘要求表面划痕深度h≤lnm,表面粗糙度Ra≤0.1nmp。1983年TANIGUCHI对各时期的加工精度进行了总结并对其发展趋势进行了预测,以此为基础,BYRNE描绘了20世纪40年代后加工精度的发展。
(2)对产品小型化的追求。伴随着加工精度提高的是工程零部件尺寸的减小。从1989~2001年,从6.2kg降低到1.8kg。电子电路高集成化要求降低硅晶片表面粗糙度、提高电路曝光用镜片的精度、半导体制造设备的运动精度。零部件的小型化意味着表面积与体积的比值不断增加,工件的表面质量及其完整性越来越重要。
(3)对产品高可靠性的追求。对轴承等一边承受载荷一边做相对运动的零件,降低表面粗糙度可改善零件的耐磨损性,提高其工作稳定性、延长使用寿命。高速高精密轴承中使用的Si3N4。陶瓷球的表面粗糙度要求达到数纳米。加工变质层的化学性质活泼,易受腐蚀,所以从提高零件耐腐蚀能力的角度出发,要求加工产生的变质层尽量小。
  (4)对产品高性能的追求。机构运动精度的提高,有利于减缓力学性能的波动、降低振动和噪声。对内燃机等要求高密封性的机械,良好的表面粗糙度可减少泄露而降低损失。二战后,航空航天工业要求部分零件在高温环境下工作,因而采用钛合金、陶瓷等难加工材料,为超精密加工提出了新的课题。

 

首页   关于佰昊   产品展示   加工工艺   新闻动态   电子感应器   质量保证   销售网络   联系我们
地址:苏州市吴江同里邱舍开发区屯浦南路148号 电话:+86-512-63211588 苏ICP备13017052号-1
网址:www.szbaihao.com 传真:+86-512-63202908 e-mail:qlty1st@163.comcom 技术支持:维联网络